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Abstract. From a semi-empirical model for the relaxation time of the heat flux and from a 
generalised Maxwell relation, we obtain the equations of state of an extended Gibbs 
equation which describes the dependence of a non-equilibrium entropy on the internal 
energy and the heat flux. By integration of the Gibbs equation, we obtain an explicit 
expression for the corresponding non-equilibrium entropy. 

1. Introduction 

While a number of macroscopic quantities have a well defined microscopic equivalent, 
e.g. the energy and the velocity, some other quantities must be defined on a thermo- 
dynamic basis, e.g. the entropy and the absolute temperature. These quantities are well 
defined at equilibrium, but their significance and definition in non-equilibrium situa- 
tions is a problematic matter which influences all the subsequent development of 
thermodynamic theories. Three main approaches have been undertaken in the modern 
non-equilibrium thermodynamics. 

(1) The classical irreversible thermodynamics (de Groot and Mazur 1962, Gyar- 
mati 1970, Glansdorff and Prigogine 1971) is based on the hypothesis of local 
equilibrium, which allows us to extend the classical definitions of entropy and of 
absolute temperature to every elemental volume of the system, even in non-equili- 
brium. 

(2) The rational thermodynamic theories (Truesdell 1969) assume that both the 
entropy and an empirical temperature are primitive concepts of general validity. 

(3) On the assumption that there exists an infinity of functionals that possess the 
required properties of the entropy, the entropy-free theories (Meixner 1967, Day 
1972) try to build a thermodynamics avoiding the definition of a non-equilibrium 
entropy as a primitive variable; however, they cannot get rid of a primitive non- 
equilibrium absolute temperature. 

Another approach to non-equilibrium thermodynamics has recently been proposed 
(Muller 1967, Lebon 1978, Jou et a1 1979, Lebon et a1 1980, Jou and Casas-Vazquez 
1980): the so-called extended irreversible thermodynamics. In this theory, the exis- 
tence of a non-equilibrium entropy is assumed whose dependence on the dissipative 
fluxes as well as on the classical thermostatic variables can be expressed through a 
generalised Gibbs equation. This theory differs from the classical one and from the 
entropy-free thermodynamics in assuming the existence of a non-equilibrium entropy; 
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also, it differs from the rational thermodynamics in placing its starting point in a Gibbs 
equation; finally, it is different from the theories of thermodynamics with internal 
variables (Biot 1954, Coleman and Gurtin 1967, Kluitenberg 1978, Bataille and Kestin 
1979) in that the internal variables are specified a priori as the dissipative fluxes. 

The aim of this paper is to construct an explicit form of the non-equilibrium entropy 
for a class of rigid heat conductors. In § 2, we review the generalised Gibbs equation of 
extended irreversible thermodynamics. In § 3, we discuss a simple, indicative model of 
the equations of state in metallic rigid conductors and we obtain the non-equilibrium 
entropy by integration of the Gibbs equation. 

2. A generalised Gibbs equation for rigid heat conductors 

It is well known (Callen 1960) that the complete macroscopic description of thermo- 
dynamic systems at equilibrium is contained in the fundamental equation, as for 
instance the total entropy S expressed as a function of properly chosen variables. For a 
rigid heat conductor, the only thermodynamic variable is the total internal energy U, 
and the fundamental equation is simply S = S ( U ) .  The classical description of non- 
equilibrium states is based on the hypothesis that the fundamental equation remains 
locally valid, and we then have s = s ( u ) ,  where s and U are the entropy and the internal 
energy per unit mass, respectively. 

The evolution of the system can be obtained from the well known energy balance 
equation 

pu = -v*  q (1) 
where q is the heat flux and p the mass density. Since a new variable q appears, the 
description of the system is not closed unless equation (1) is supplemented with an 
independent relation between q and U. In the classical approach, q is related to the 
spatial distribution of U by means of the Fourier constitutive equation 

q = -ACT ( 2 )  

where A is the thermal conductivity. When this equation is introduced into (1) we are 
led to a parabolic equation for the evolution of T, and therefore the thermal dis- 
turbances propagate at infinite velocity. To avoid this feature, Cattaneo (1958) 
proposed a generalisation of the Fourier equation with a relaxation term, already 
motivated by Maxwell (1867), which has the form 

(3) 

where r is the relaxation time of the heat flux. While this equation, when introduced 
into (1), leads to a hyperbolic differential equation and therefore yields a finite velocity 
for the propagation of thermal disturbances, it however violates the second law of 
thermodynamics, since it leads for the entropy production to 

(4) 

This expression can be made negative by giving to q (VT) a sufficiently negative value. 
'Therefore, the classical formulation is inconsistent with equation (3) ,  which was 
originally proposed from arguments of the kinetic theory of gases. Equation (3) has 
been extensively used by many authors (Kranys 1977, Gyarmati 1977, Lebon 1978, 

4 = -A V T - ~q 

cr3 = T-'[A (VT)2 + rq * (VT)] .  
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Carrassi 1078, Israel 1976, and references quoted in these papers) and it has been 
tested from experiments by Rogers (197 1). 

We now take the point of view of extended irreversible thermodynamics. Instead of 
expressing q in terms of V T, we consider it as an independent variable. The problem, 
then, is to find the corresponding evolution equation for q in order to construct a 
thermodynamic theory consistent with equation (3). We assume the existence of a 
non-equilibrium entropy which depends on U and q and whose differential is given by 

ds = (as /au)  du + (as /aq)  dq. ( 5 )  

We assume that s is sufficiently differentiable in order that the first and the second 
derivatives can exist. In analogy with the classical definition of absolute temperature, 
we identify ( a s / a u )  with the inverse of the non-equilibrium absolute temperature 

T-'(u, q )  = (as/du) ,  (6) 

T-?r*,q)= Te;: ( u ) + P ( u ) q 2  (7) 

which can be developed in series of q2 giving, up to the first order, 

where Tcq is the local-equilibrium absolute temperature and P ( U )  is a parameter to be 
identified. Some authors have defined the absolute temperature as T-' = (8s/au),=,,. 
However, since we aim at obtaining an expression for the non-equilibrium entropy, we 
need the general expression (7) whether or not we call it temperature. 

Also, we have for the second equation of state arising from (5) the following 
expression, up to second order in the heat flux: 

( a s / a q ) u  = Ti: (u)a(u)p-'q (8) 
where cy ( U )  is a parameter that we identify below. 

hold: 
Since ( 5 )  is an exact differential, the following generalised Maxwell equation must 

(aT-' /adu = [a(T&-'aq)/aul, (9) 

P ( u )  =; d(Ti:p-'a)/du. (10) 

which leads to 

In order to identify the function cy ( U ) ,  we proceed through the usual development of 
extended irreversible thermodynamics (Jou et a1 1979, Lebon et a1 1980). First of all, 
we introduce (1) into the time derivative of the entropy, 

p i  = T-'pU + T-'aq * 4, (11) 

and we obtain the following expressions for the entropy flux J, and for the entropy 
production U, : 

J, = T-'q, c, = q * (VT-'+ T-'atj). (12) 

U, = q (VT;: + Tiiaq) .  (13) 

Up to second order in the heat flux, the entropy production can be written in the form 

As we have said, we look for an equation for 4 in terms of U, q and their spatial 
gradients. The simplest assumption compatible with the requirements of the second 
law is, in view of the bilinear character of (13), 

VTi:  + Tiicyq = /*q (14) 
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with ,U 3 0. This leads to the following evolution equation for q :  

(15) 

A comparison of this equation with the Maxwell-Cattaneo equation ( 3 )  leads to the 

a = +AT& (16) 

-1 d=(Teqa p)(q-/-- 'VTii) .  

identification ,U = (AT:,)-' and Teqa-'k = -T - ' ,  so that we have 

When this expression of a in terms of physical quantities is introduced into the 
generalised Maxwell equation ( lo) ,  we obtain 

@ ( U )  = -($) d(.rh-'T::)/du. (17) 

but 
the 

In the classical equilibrium thermodynamics, the entropy is not measured directly, 
is obtained from the so-called TdS equations (Zemansky 1957), by integration of 
specific heat at constant volume and of the coefficient of thermal expansion and of 

isothermal compressibility, which are indeed well known experimental quantities. 
Here, however, from a more theoretical point of view, we proceed directly to the 
integration of the Gibbs equation (5) which, with the interpretations (6) and (16), 
becomes 

ds = T-l du -~(phT:,)-'q * dq. (18) 

The relaxation time can be measured, at least in principle, from the velocity of 
propagation of thermal signals, to which it is directly related. Also, the heat conduc- 
tivity A is a well known and tabulated quantity. The non-classical part of T-l can be 
obtained from the generalised Maxwell relation, and the classical equation of state for 
Teq is known from thermostatics. Therefore, an expression for the non-equilibrium 
entropy ( 5 )  can be obtained by integration of (18). 

3. A semi-empirical model for the generalised equations of state for a class of rigid 
conductors 

In order to obtain some definite expressions for the equations of state of (18), we have to 
make some assumptions about the relaxation time 7, which is a quantity difficult to 
measure experimentally. Therefore, we invoke a semi-empirical model in order to 
obtain an illustrative example of the obtention of a non-equilibrium entropy. 

We assume here the example of metallic rigid conductors at room temperature, 
where the Wiedemann-Franz law (Wannier 1966), relating the thermal and the electric 
conductivity, is valid. This law allows us to obtain some information about the thermal 
conductivity, starting from the electrical conductivity, about which much more is 
known. When the phonon transport of energy is negligible, the Wiedemann-Franz law 
states that 

A (ueT)-' = ( 7 r 2 k 2 / 3 e 2 )  (19) 

where ue, k and e are respectively the electrical conductivity, the Boltzmann constant 
and the electric charge of the electron. 

The electrical conductivity of the metal is given by (Wannier 1966) 

ue = (nee2/m,)r" (20) 

with ne, me and T* the electron density, electron mass and electron momentum 
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relaxation time, respectively. Since the heat conduction is a transport phenomenon 
which, in the situation described here, is directly related to the motion of the electrons, 
as well as the electrical conduction, we assume, like Wilhelm and Choi (1975), that the 
heat flux relaxation time T (  T )  can be identified with T *  and therefore, by combining (19) 
and (20), we find 

(Teq) = bh ( Teq) Ti: (21) 

where b is a constant given by b = (3me/.rr2k2ne), which is of the order of b = 
10-'9K2cms2erg-1, which is consistent with a value of T of the order of 10-14s. 
Though this value for T is very small, we have to keep in mind that the lower the 
temperature of the system, the longer its relaxation time, in general. Of course, the 
identification of T with T* is open to discussion, and we remind the reader that we take it 
only as a simple example for the illustration of the purposes of this paper. With this 
hypothesis, we obtain the second equation of state of (18). Indeed, from (8) and (16) we 
have 

(ds/aq), = -bp-'T,-,34. (22) 

With this information, and through the Maxwell relation (17), we obtain the 
following equation of state for the non-equilibrium absolute temperature: 

T-'(u,  q )  = Ti: (U) + (3b/2p)T:: (dTeq/du)q2. (23) 

We assume that the classical equation of state for the absolute temperature is known 
from thermostatic measurements, so that all the coefficients in (18) are known. 
Introducing the subsequent equations of state (22) and (24) into (18) and integrating the 
corresponding expression, we find for the non-equilibrium entropy 

~ ( u ,  4 )  = seq(u)- ( b / 2 ~ ) ( a s e q / a ~ ) ~ q ~ .  (24) 

Note that this expression applies for heat conduction processes, but that in order to 
have a more complete description of the system it should be generalised to include 
electrical conduction. It is seen therefore that the definition of the non-equilibrium 
entropy depends on which description we use for studying our system (Penrose 1979) 
and that there is no unique prescription for defining an entropy in non-equilibrium 
situations. 

Some comments can be made also with respect to the non-equilibrium temperature 
(23). While the numerical value of the non-classical terms in (23) is in fact negligible 
compared with the value of the classical term, this non-equilibrium temperature 
deserves some mention from the theoretical point of view. Indeed, the non-equilibrium 
absolute temperature is a concept common to all non-equilibrium thermodynamic 
theories. In the local-equlibrium theories, it is simply assumed that it is defined locally 
by the classical expression, so that there is no fundamental distinction between the 
classical and the non-equilibrium absolute temperature. In the Coleman-Truesdell- 
No11 formulation of rational thermodynamics, the non-equilibrium absolute tempera- 
ture is a primitive quantity which appears from the start in the Clausius-Duhem 
inequality. On the other hand, in Muller's formulation of rational thermodynamics 
(Hutter 1977), the absolute temperature is a derived quantity, and instead of absolute 
temperature there appears the coldness, which is a universal function for some classes of 
materials (heat conducting fluids, thermoelastic bodies). The coldness A generalises the 
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concept of absolute temperature, and is a function of the primitive empirical tempera- 
ture 0 and of its rate of change, i.e. A = R ( 0 ,  e), in such a way that the local-equilibrium 
absolute temperature can be identified as the value of A when 6 = 0. 

Also, even in entropy-free theories, the non-equilibrium absolute temperature 
cannot be avoided. In this way, Meixner (1967) defines a second temperature, which is 
different from the local-equilibrium absolute temperature. We note that, as in our 
formulation, the coldness and the second temperature do not coincide in principle with 
the local-equilibrium temperature. However, in a rigid heat conductor in a steady 
non-equilibrium state, both the coldness and the second temperature reduce to the 
local-equilibrium temperature, while our expression ( 2 3 )  remains different even in this 
situation. The fundamental problem of the existence and significance of a non- 
equilibrium entropy and temperature remains an open question (Muschik 1977, Lebon 
and Lambermont 1977) which is not our concern here. 

4. Conclusions 

Starting from the assumption of the existence of a non-equilibrium entropy which 
depends on U and q, and assuming it to be sufficiently differentiable, we have identified 
the coefficients of the corresponding generalised Gibbs equation. Since the experi- 
mental results for its equations of state are rather difficult to obtain, and in order to 
obtain an illustrative expression for the non-equilibrium entropy, we have made a 
semi-empirical hypothesis on the relaxation time of the heat flux in metallic rigid heat 
conductors. This has led us to definite and simple expressions for the equations of state. 

In particular, we have obtained an expression relating the non-equilibrium absolute 
temperature to the local-equilibrium absolute temperature. As a definition for the 
former, we have assumed the validity of the classical expression T = ( d s / a u )  with the 
non-equilibrium entropy. Of course, the validity of this definition is open to criticism, 
but we can observe that a kinetic definition of temperature also shares an analogous 
shortcoming, because the latter definition is based on the equipartition theorem, which 
is only valid at equilibrium. Finally, we have to keep in mind that even in thermostatics, 
the criterion that allows us to identify ( a s / d u )  as the inverse of the absolute temperature 
is that the condition of thermal equilibrium between two subsystems in diathermic 
contact is the equality of these corresponding derivatives in both subsystems. Since our 
non-equilibrium temperature reduces when q = 0 to the thermostatic temperature, it 
has this property also and can be called temperature. 
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